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Summary

An extension to the classical lifting line method based on Prandtl's theory is 
described.  The  extended method allows  employing nonlinear  section lift 
data, giving more realistic results at higher angles of attack. Amongst other 
quantities, the method is able to estimate the point where separation of 
boundary  layer  first  occurs.  We  employ  the  method  in  an  optimization 
problem constrained by the position of the separation point on the wing 
and present the results.

1 Introduction

The lifting line theory invented by Prandtl is classical ([1]).  In this article,  we present an 
extension of this method designed to exploit nonlinear 2D wing section lift data, supplied by 
sophisticated 2D solvers such as XFOIL ([2]).  This extension seems to be a promising tool for 
obtaining estimates of various very useful characteristics of 3D configurations several orders 
of  magnitude faster  than possible  using CFD solvers.  The article  is  split  into sections as 
follows. In Section 2, we give the governing mathematical equations that form the base of the 
method,  describe the numerical  procedure used for  solving these equations,  describe our 
open source implementation and show example results. Section 3 discusses the applicability 
of  the  results  of  our  method  to  real  world  problems  and  comparisons  with  wind  tunnel 
experiments. Section 4 shows an application of our method to wing design optimization.

2 Method description

2.1 Mathematical  formulation

The method starts from the assumption that the flow around the wing can be modeled by a 
system of horseshoe vortices, as shown on Fig. 1. The bound segments of these vortices model 
the  circulation  around the  wing,  while  the  free  segments  form the wake.  Given  a  single 
horseshoe vortex with known strength (circulation), its induced velocity in any point in the 3D 
space can be calculated using the Biot-Savart law:
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This  formula  gives  the  induced  velocity  of  an  infinitesimal  vortex  segment.  The  induced 
velocity of a vortex thread is obtained by integrating along the thread. The velocities induced 
by a system of vortex threads (the horseshoe vortex system) are obtained by superposition.



Given the vortex strengths, we can, using the above method, calculate induced velocities in 
the midpoints of the bound vortex segments (the influence of a bound segment on itself is set 
to zero).
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These induced velocities are superimposed onto the freestream velocity to get local stream 
velocity  and local angle of  attack (in the following equations,  we omit  the subscript  i for 
brevity)
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The local lift coefficient is interpolated from the local polars:
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and the equations are closed using the Kutta-Joukowski law (loc superscripts omitted):
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Choosing the local  circulations as unknown variables,  we end with a system of  nonlinear 
equations of the form
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where Fj are scalar nonlinear functions of two variables. These functions depend not only on 
the wing geometry and the section polars, but also on the global angle of attack.

2.2 Solution method

As described above, the problem of determining the circulations for a given configuration can 
be transformed into a set of nonlinear equations dependent on the global angle of attack (the 
wing  geometry  and  section  polars  as  fixed  throughout  a  single  computation).  In  vector 
notation (bold symbols denote vector variables and vector functions), we can write it as

F ,=0  (7)

 The  computation  proceeds  by  continuously  tracking    using  a  predictor-corrector 
paradigm.  At  any  angle  of  attack  ,  we  choose  a  step  ,  and  use  approximate 
differentiation of the previous equation to obtain the predictor in the form:

∇ F ,⋅=−F  ,  (8)



with   unknown.  Afterwards,  we  replace  ,  and  use  the  new 
value of   as a starting point for the corrector applied to the system of nonlinear equations 
(7).  The corrector is  the Levenberg-Marquardt method for solving nonlinear least squares 
problems. That is, the system (7) is solved in a least squares sense for better robustness.

2.3 Implementation description

The above method has been implemented as a package for the Octave system ([3]), an open 
source “clone” of Matlab. The package is called NLWing2 and it is part of the OctaveForge 
project,  that  comprises  many  packages  for  Octave  ([4]).  The  wing  geometry  is  specified 
directly  using  3D  coordinates  of  the  quarter-point  line,  along  with  local  depth  and  twist 
distribution. As a consequence, curved and swept wings can be specified, as well as wings 
with  dihedral  angle  (not  necessarily  constant),  and  they  can  be  of  arbitrary  planform.  It 
should be noted, however, that the horseshoe model may not be appropriate for wings with 
excessive sweep and dihedral angles, and thus the method may fail to yield sensible results in 
such cases. The package implements the predictor-corrector approach as described above, 
choosing step adaptively. A number of quantities are computed using the known span-wise 
local angle of attack distribution: the lift, viscous drag, induced drag & momentum coefficient 
of the wing (using local viscous drag and momentum interpolated from local polars). Local 
span-wise quantities, including local angle of attack, are also obtained.
Fig. 2 shows a comparison between the nonlinear lift curve of a wing produced by NLWing2 
and a linear curve produced by solving the linear Prandtl's equation by Glauert's method.
Fig. 3 compares the span-wise lift distributions.

Figure 1: The horsheshoe vortex model of a wing



Figure 2: Comparison of lift curves of a wing, linear vs. nonlinear method.

3 Interpretation and verification of results

3.1 Behaviour at high angles of attack

Numerical problems always start occurring when local lifts approach local maximum lifts. The 
problem stems from the fact that in such areas, the lift does not uniquely determine the angle 
of attack. This causes spurious oscillations in the local angle of attack distribution, leading the 
process “the wrong way”. It does not seem possible to solve this problem within the current 
framework – no matter what we choose for control variables. As long as the equations are 
closed via the lift coefficient, the problem always occurs. We are not yet sure whether or not 
some kind of stabilization would help solve this issue. Certain experiments suggested that, 
rather than being a purely numerical issue, the oscillations may even be an inherent property 
of the governing nonlinear equations. That means, it may even be possible that there is a 
unique oscillating solution. That would, of course, mean that the model simply ceases to be 
feasible. Resolving this issue will be a subject of further research.
Nevertheless, for most wings it is possible to reach the point where the local angle of attack 
at a certain point along the span reaches the angle of attack of the maximum local lift, or even 
surpasses it by up to 0.5-1 degrees, before the solution deteriorates. 



Figure 3: Comparison of span-wise lift distributions, linear vs. nonlinear 
method.

3.2 Boundary layer separation and stall of lift

Since we associate the decline of  local  lift  (of  a  2D wing section)  with the separation of 
boundary layer, our method gives us a means to estimate the span-wise point where, with 
increasing angle of attack, the separation starts to appear (and it spreads from there). 
This  information  is  very  valuable  for  flight  stability  and  safety.  The point  is  to  keep  the 
separation away from ailerons; otherwise, the pilot loses control over the aircraft.
A  detailed  investigation  of  accuracy  of  these  estimates  is  a  subject  of  current  research. 
Preliminary comparisons with wind tunnel experiments described in the next section below 
show that the accuracy may be within 5% of the span. Given that our method is able to deliver 
the result within seconds, whereas CFD computations usually take hours (even days) to get a 
comparable result (several angles of attack need to be computed), verifying this accuracy (at 
least for certain classes of wings) would make our method a valuable tool for estimating this 
property of the wing.

3.3 Wind tunnel experiment

An experiment in the 3mLSWT wind tunnel in VZLU was carried out. The experiment was 
focused to show the point where the separation on the wing starts. A model of twin-engine 
turboprop  with  high-wing  was  used.  For  the  purpose  of  comparison  with  the  numerical 
computation, the engine nacelles were put off of the wing. The upper side of the wing was 
equipped with tufts for the flow visualization. The tests were performed at Reynold number of 



700000 and Mach number of 0.15. Results showed, that the separation starts at 25-30% of the 
wing span, what was also predicted by the calculation. 

Figure 4: Picture of tunnel measurements

4 Application to wing optimization

4.1 Design variables and constraints

We used our method to solve a particular wing design optimization problem, carried out as 
part of the CESAR project at VZLÚ. The goal was to optimize the planform of a symmetric 
wing,  consisting  of  two  (for  each  half)  trapezoidal  sections.  The  geometry  was  to  be 
determined by the following five design variables:



● Sw: The wing planform area 23 - 27 m2

● TR: Taper ratio (tip chord / root chord) 0.4 – 0.6
● ttw: Tip twist 0 - 4
● xbr: Relative break position 0 – 0.5
● btr: Deviation from trapezoidal wing: -1 – 1

The last two variables deserve a more precise description. Say that the root chord length is 
crw ,  cbr  is the chord length separating the root (inner) and tip (outer) trapezoid, and 

c tw  is the tip chord length. Further, let br  and b t  be the root and tip trapezoid span, 

respectively. Then

 
xbr=

br

brbt
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and

btr=
cbr – cb0

crw−cb0

, cb0= xbr c tw1− xbr crw .  (10)

Further,  crw= .1 955m ,  dihedral  angle  is  1.5,  and  the  quarter-chord  line  is  assumed 

straight. These constraints determine the geometry of the wing.

4.2 Objectives and constraints

The optimization was driven by the following objectives:
● minimize CD SW at CL Sw=7.558
● minimize −C M SW C MAC at CL Sw= .7 558

and the primary constraint
● Z SEP /b /2≤0.6

Where  Z SEP is  the span-wise coordinate  where the local  lift  coefficient first  reaches its 

maximum (critical point).  These objectives were earlier used in optimizing a wing formed by 
a  single  trapezoid  (btr =  0),  used  as  a  preliminary  problem,  and  worked  well.  It  was, 
however, later discovered that in the more general design space, these objectives do not lead 
to a compromise surface but rather produce a single Pareto optimum. The reason is that in 
the  single-trapezoid  case,  the  primary  mechanism  to  shift  Z SEP towards  the  root  is  to 

increase the tip twist. Unfixing btr, however, can form a small downwards-oriented spike in 
the span-wise lift distribution and thus introduces a completely different mechanism to satisfy 
the primary constraint, by shifting this spike towards the root, as indicated in Fig. 5. This 
obviously comes at the cost of lowering the critical angle of attack, which was not reflected by 
our original objectives. We therefore added the following:

● maximize CL SW  at CRIT

This  turned  our  problem  into  a  3-objective  one  with  a  non-degenerate  Pareto  front 
(compromise surface), as shown in the following section.



4.3 Results

Selected candidate designs were evaluated for  objectives and constraints using NLWing2. 
Together with the recently developed parallel evaluation capabilities for Octave (parcellfun 
from OctaveForge/general), using 8 AMD Opteron processors (@2.4GHz), evaluation of 55 = 
3125 designs takes  just 21 min 9s, giving an average of 0.4s per design (3.2s on a single 
CPU). It should be also noted that to evaluate the objectives, NLWing2 evaluates the wing 
performance at a sequence of angles of attack (operating points), in our case usually between 
40 and 50.

The  outstanding  performance  of  our  design  evaluation  procedure  gives  us  the  option  to 
perform exhaustive sampling of the design space as an alternative to genuine optimization 
algorithms, by simply evaluating the objectives at a grid of designs and just picking out the 
optimal solutions. This can be thought of as a very simplistic optimization algorithm. Despite 
its  simplicity,  it  has  the  advantage  of  being  very  robust  and  essentially  fail-safe;  it  is 
guaranteed to find any sufficiently broad local optimum.
We also solved the same problem by employing a true multi-objective optimization algorithm 
the -ARMOGA algorithm, described in [5]. 

Fig.  6 shows a result  of  sampling the 5-dimensional  space using a Cartesian grid  with 5 
sample points  in  each dimension.  All  designs are shown as red,  the Pareto-optimal  (non-
dominated) results are highlighted as blue.

Figure 5: The effect of chord length spike on the point of separation



The point in the left-lower-back corner corresponds to the unique Pareto optimum if only the 
first two objectives are considered, as described in the previous section.

Fig. 7 compares the Pareto fronts  achieved from grid sampling and by using the genetic 
algorithm. Since the sampling was rather coarse, the results from the genetic algorithm are 
significantly better. It is also more clearly visible how the Pareto front surface deteriorates to 
a spike when the third objective is low (again left-lower-back corner). 

Figure 6: Sampled design objectives with nondominated designs selected



Figure 7: Comparison of results from sampling and genetic algorithm

5 Conclusion

We have shown a nonlinear extension of the classical lifting line method for computation of 
aerodynamic wing performance, and the capabilities of  our implementation, especially the 
vastly superior performance compared to CFD approaches. We have pointed out the areas 
that are subject to ongoing research and demonstrated an application of the method to design 
optimization of a wing planform, constrained by conditions at the critical angle of attack. We 
have also shown how the choice of objectives significantly impacts the nature of the problem 
and its solution.
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